The COVID-19 pandemic has precipitated an unprecedented surge in the proliferation of online E-learning platforms, designed to cater to a wide array of subjects across all age groups. However, a paucity of these platforms adopts a learner-centric approach or validates user learning, underscoring the need for effective E-learning validation and personalized learning recommendations. This paper addresses these challenges by implementing an innovative approach that leverages real-time electroencephalogram (EEG) signals collected from learners, who don neuro headsets while partaking in online courses. These EEG signals are subsequently classified using Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) deep learning models, with the intent of discerning the efficacy of the E-learning process. The proposed models have yielded promising classification accuracies of 68% and 97% for the CNN and LSTM models, respectively, demonstrating their rapidity and precision in classifying E-learning EEG signals. Thus, these models hold substantial potential for application in similar E-learning validation scenarios. Furthermore, this study introduces an automated framework designed to track the learning curve of users and furnish valuable recommendations for E-learning materials. The presented approach, therefore, not only validates the E-learning process but also aids in optimizing the learning experiences on E-learning platforms.
CITATION STYLE
Pathak, D., & Kashyap, R. (2023). Neural Correlate-Based E-Learning Validation and Classification Using Convolutional and Long Short-Term Memory Networks. Traitement Du Signal, 40(4), 1457–1467. https://doi.org/10.18280/ts.400414
Mendeley helps you to discover research relevant for your work.