Determining the discharge and recharge relationships between lake and groundwater in lake Hulun using hydrogen and oxygen isotopes and chloride ions

22Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

This study examined the discharge and recharge relationships between lake and groundwater in Lake Hulun using a novel tracer method that tracks hydrogen and oxygen isotopes and chloride ions. The hydrogen and oxygen isotopes in precipitation falling in the Lake Hulun Basin were compared with those in water samples from the lake and from the local river, well and spring water during both freezing and non-freezing periods in 2017. The results showed that the local meteoric water line equation in the Lake Hulun area is δD = 6.68 δ 18 O - 5.89h(R 2 = 0.96) and the main source of water supply in the study area is precipitation. Long-term groundwater monitoring data revealed that the groundwater is effectively recharged by precipitation through the aeration zone. Exchanges between the various compounds during the strong evaporative fractionation process in groundwater are responsible for the gradual depletion of δ 18 O. The lake is recharged by groundwater during the non-freezing period, as shown in the map constructed to show the recharge and discharge relationships between the lake and groundwater. The steadily rising lake water levels in the summer mean that the water level before the freeze is high and consequently the water in the lake drains into the surrounding groundwater via faults along both sides of the lake during the frozen period. The groundwater is discharged into the lake in the west and into the Urson River in the east due to the Cuogang uplift.

Cite

CITATION STYLE

APA

Han, Z., Shi, X., Jia, K., Sun, B., Zhao, S., & Fu, C. (2019). Determining the discharge and recharge relationships between lake and groundwater in lake Hulun using hydrogen and oxygen isotopes and chloride ions. Water (Switzerland), 11(2). https://doi.org/10.3390/w11020264

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free