Light-induced cell damage in live-cell super-resolution microscopy

349Citations
Citations of this article
609Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Super-resolution microscopy can unravel previously hidden details of cellular structures but requires high irradiation intensities to use the limited photon budget efficiently. Such high photon densities are likely to induce cellular damage in live-cell experiments. We applied single-molecule localization microscopy conditions and tested the influence of irradiation intensity, illumination-mode, wavelength, light-dose, temperature and fluorescence labeling on the survival probability of different cell lines 20-24 hours after irradiation. In addition, we measured the microtubule growth speed after irradiation. The photo-sensitivity is dramatically increased at lower irradiation wavelength. We observed fixation, plasma membrane permeabilization and cytoskeleton destruction upon irradiation with shorter wavelengths. While cells stand light intensities of ~1 kW cm-2 at 640 nm for several minutes, the maximum dose at 405 nm is only ~50 J cm-2, emphasizing red fluorophores for live-cell localization microscopy. We also present strategies to minimize phototoxic factors and maximize the cells ability to cope with higher irradiation intensities.

Cite

CITATION STYLE

APA

Waldchen, S., Lehmann, J., Klein, T., Van De Linde, S., & Sauer, M. (2015). Light-induced cell damage in live-cell super-resolution microscopy. Scientific Reports, 5. https://doi.org/10.1038/srep15348

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free