Intermittency, local isotropy, and non-Gaussian statistics in atmospheric surface layer turbulence

84Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Orthonormal wavelet expansions are applied to atmospheric surface layer velocity and temperature measurements above a uniform bare soil surface that exhibit a long inertial subrange energy spectrum. In order to investigate intermittency effects on Kolmogorov's theory, a direct relation between the nth-order structure function and the wavelet coefficients is derived. This relation is used to examine deviations from the classical Kolmogorov theory for velocity and temperature in the inertial subrange. The local nature of the orthonormal wavelet transform in physical space aided the identification of events directly contributing to intermittency buildup at inertial subrange scales. These events occur at edges of large eddies and contaminate the Kolmogorov inertial subrange scaling. By suppressing these events, the statistical structure of the inertial subrange for the velocity and temperature, as described by Kolmogorov's theory, is recovered. The suppression of intermittency on the nth-order structure function is carried out via a conditional wavelet sampling scheme. The conditioned wavelet statistics reproduced the Kolmogorov scaling (up to n = 6) in the inertial subrange and result in a zero intermittency factor. The conditional wavelet statistics for the mixed velocity temperature structure functions are also presented. It was found that the conditional wavelet statistics for these mixed moments result in a thermal intermittency parameter consistent with other laboratory and field measurements. The relationship between Kolmogorov's theory and near-Gaussian statistics for velocity and temperature gradients is also considered. © 1994 American Institute of Physics.

Cite

CITATION STYLE

APA

Katul, G. G., Parlange, M. B., & Chu, C. R. (1994). Intermittency, local isotropy, and non-Gaussian statistics in atmospheric surface layer turbulence. Physics of Fluids, 6(7), 2480–2492. https://doi.org/10.1063/1.868196

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free