The acidic leucine-rich nuclear phosphoprotein 32 (ANP32)B has been reported to regulate gene expression by acting as a histone chaperone or modulate messenger RNA trafficking by serving as a HuR ligand. However, its exact cellular functions are poorly understood. By utilizing a proteomics-based approach, in this work, we identify that the human ANP32B protein is cleaved during apoptosis induction by NSC606985, a novel camptothecin analog. Further investigation shows that various apoptosis inducers cause a decrease of full-length ANP32B in multiple cell lines with a concomitant increase of an ~17 kDa fragment. The proteolytic cleavage of ANP32B is inhibited by a specific caspase-3 inhibitor Z-DEVD-fmk, and it cannot be seen in NSC606985-induced death of caspase-3-deficient MCF-7 cells. In vitro caspase cleavage assay and mutagenesis experiment reveal that ANP32B is a direct substrate of caspase-3 and it is primarily cleaved at the sequence of Ala-Glu-Val-Asp, after Asp-163. Additionally, the reduced expression of endogenous ANP32B by specific small interfering RNA enhances caspase-3 activation and apoptosis induction by NSC606985 and etoposide. These results suggest that ANP32B is a novel substrate for caspase-3 and acts as a negative regulator for apoptosis, the mechanism of which remains to be explored. © The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org.
CITATION STYLE
Shen, S. M., Yu, Y., Wu, Y. L., Cheng, J. K., Wang, L. S., & Chen, G. Q. (2010). Downregulation of ANP32B, a novel substrate of caspase-3, enhances caspase-3 activation and apoptosis induction in myeloid leukemic cells. Carcinogenesis, 31(3), 419–426. https://doi.org/10.1093/carcin/bgp320
Mendeley helps you to discover research relevant for your work.