Downregulation of ANP32B, a novel substrate of caspase-3, enhances caspase-3 activation and apoptosis induction in myeloid leukemic cells

53Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The acidic leucine-rich nuclear phosphoprotein 32 (ANP32)B has been reported to regulate gene expression by acting as a histone chaperone or modulate messenger RNA trafficking by serving as a HuR ligand. However, its exact cellular functions are poorly understood. By utilizing a proteomics-based approach, in this work, we identify that the human ANP32B protein is cleaved during apoptosis induction by NSC606985, a novel camptothecin analog. Further investigation shows that various apoptosis inducers cause a decrease of full-length ANP32B in multiple cell lines with a concomitant increase of an ~17 kDa fragment. The proteolytic cleavage of ANP32B is inhibited by a specific caspase-3 inhibitor Z-DEVD-fmk, and it cannot be seen in NSC606985-induced death of caspase-3-deficient MCF-7 cells. In vitro caspase cleavage assay and mutagenesis experiment reveal that ANP32B is a direct substrate of caspase-3 and it is primarily cleaved at the sequence of Ala-Glu-Val-Asp, after Asp-163. Additionally, the reduced expression of endogenous ANP32B by specific small interfering RNA enhances caspase-3 activation and apoptosis induction by NSC606985 and etoposide. These results suggest that ANP32B is a novel substrate for caspase-3 and acts as a negative regulator for apoptosis, the mechanism of which remains to be explored. © The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org.

Cite

CITATION STYLE

APA

Shen, S. M., Yu, Y., Wu, Y. L., Cheng, J. K., Wang, L. S., & Chen, G. Q. (2010). Downregulation of ANP32B, a novel substrate of caspase-3, enhances caspase-3 activation and apoptosis induction in myeloid leukemic cells. Carcinogenesis, 31(3), 419–426. https://doi.org/10.1093/carcin/bgp320

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free