Stable, single-nanometer thin, and free-standing two-dimensional layers with controlled molecular architectures are desired for several applications ranging from (opto-)electronic devices to nanoparticle and single-biomolecule characterization. It is, however, challenging to construct these stable single molecular layers via self-assembly, as the cohesion of those systems is ensured only by in-plane bonds. We herein demonstrate that relatively weak noncovalent bonds of limited directionality such as dipole-dipole (–CNNC–) interactions act in a synergistic fashion to stabilize crystalline monomolecular layers of tetrafunctional calixarenes. The monolayers produced, demonstrated to be freestanding, display a well-defined atomic structure on the single-nanometer scale and are robust under a wide range of conditions including photon and electron radiation. This work opens up new avenues for the fabrication of robust, single-component, and free-standing layers via bottom-up self-assembly.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Moradi, M., Opara, N. L., Tulli, L. G., Wäckerlin, C., Dalgarno, S. J., Teat, S. J., … Shahgaldian, P. (2019). Supramolecular architectures of molecularly thin yet robust free-standing layers. Science Advances, 5(2). https://doi.org/10.1126/sciadv.aav4489