Depuis 2010, les techniques prédictives basées sur l’apprentissage artificiel (machine learning), et plus spécifiquement des réseaux de neurones (deep learning), réalisent des prouesses spectaculaires dans les domaines de la reconnaissance d’image ou de la traduction automatique, sous l’égide du terme d’“Intelligence artificielle”. Or l’appartenance de ces techniques à ce domaine de recherche n’a pas toujours été de soi. Dans l’histoire tumultueuse de l’IA, les techniques d’apprentissage utilisant des réseaux de neurones – que l’on qualifie de “connexionnistes” – ont même longtemps été moquées et ostracisées par le courant dit “symbolique”. Cet article propose de retracer l’histoire de l’Intelligence artificielle au prisme de la tension entre ces deux approches, symbolique et connexionniste. Dans une perspective d’histoire sociale des sciences et des techniques, il s’attache à mettre en évidence la manière dont les chercheurs, s’appuyant sur l’arrivée de données massives et la démultiplication des capacités de calcul, ont entrepris de reformuler le projet de l’IA symbolique en renouant avec l’esprit des machines adaptatives et inductives de l’époque de la cybernétique.
CITATION STYLE
Cardon, D., Cointet, J.-P., & Mazières, A. (2018). La revanche des neurones. Réseaux, n° 211(5), 173–220. https://doi.org/10.3917/res.211.0173
Mendeley helps you to discover research relevant for your work.