To aid in the creation of sustainable structures, scientists have utilized waste materials found in the environment to serve as alternatives for traditional resources in the construction sector. They have undertaken extensive investigations pertaining to this matter. In this particular study, tempered glass as waste glass coarse aggregate (WGCA) was substituted for natural coarse aggregate (NCA) at varying proportions of 15%, 30%, and 45% in the formulation of eco-friendly self-compacting concrete (SCC), combined with hooked-end steel fibers (SFs) at various volumes. The study assessed concrete’s flowability, permeability, compressive strength, and fracture parameters at 28 and 56 days. A total of 240 edge-notched disc bending samples (ENDB) and 60 cubic samples (150 × 150 mm) were tested to assess fracture resilience and compressive strength, respectively. The results showed that increasing SF and WGCA content reduced slump flow diameter and blockage ratio, particularly at higher levels. The solidified characteristics of all specimens incorporating SF and WGCA displayed heightened attributes when contrasted with the reference sample. Among the entire array of specimens, WG15SF0.5 and WG30SF0.5 exhibited the most superior performance, demonstrating an average percentage elevation of 20.29 and 27.63 in both compressive strength and fracture toughness assessments across the different curing periods. SF had the most significant impact on post-cracking behavior by enhancing load-bearing capacity through a bridging fiber mechanism. Through a comparison of the influence of SFs and WGCA on the fracture toughness of pure mode III, it was observed that the inclusion of SF in samples with a 30% replacement of WGCA resulted in an average increase of approximately 15.48% and 11.1% in this mode at the ages of 28 and 56 days, respectively, compared to the control sample.
CITATION STYLE
Pournoori, P., Davarpanah T.Q, A., Rajaee, A., Ghodratnama, M., Abrishami, S., & Masoodi, A. R. (2024). Experimental exploration of fracture behavior (pure mode III) in eco-friendly steel fiber-reinforced self-compacting concrete with waste tempered glass as coarse aggregates. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-58912-z
Mendeley helps you to discover research relevant for your work.