Machine learning-based impedance system for real-time recognition of antibiotic-susceptible bacteria with parallel cytometry

13Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Impedance cytometry has enabled label-free and fast antibiotic susceptibility testing of bacterial single cells. Here, a machine learning-based impedance system is provided to score the phenotypic response of bacterial single cells to antibiotic treatment, with a high throughput of more than one thousand cells per min. In contrast to other impedance systems, an online training method on reference particles is provided, as the parallel impedance cytometry can distinguish reference particles from target particles, and label reference and target particles as the training and test set, respectively, in real time. Experiments with polystyrene beads of two different sizes (3 and 4.5 µm) confirm the functionality and stability of the system. Additionally, antibiotic-treated Escherichia coli cells are measured every two hours during the six-hour drug treatment. All results successfully show the capability of real-time characterizing the change in dielectric properties of individual cells, recognizing single susceptible cells, as well as analyzing the proportion of susceptible cells within heterogeneous populations in real time. As the intelligent impedance system can perform all impedance-based characterization and recognition of particles in real time, it can free operators from the post-processing and data interpretation.

Cite

CITATION STYLE

APA

Tang, T., Liu, X., Yuan, Y., Kiya, R., Zhang, T., Yang, Y., … Yalikun, Y. (2023). Machine learning-based impedance system for real-time recognition of antibiotic-susceptible bacteria with parallel cytometry. Sensors and Actuators B: Chemical, 374. https://doi.org/10.1016/j.snb.2022.132698

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free