Bose-Einstein condensation describes the macroscopic occupation of a single-particle mode: the condensate. This state can in principle be realized for any particles obeying Bose-Einstein statistics; this includes hybrid light-matter excitations known as polaritons. Some of the unique optoelectronic properties of organic molecules make them especially well suited for the realization of polariton condensates. Exciton-polaritons form in optical cavities when electronic excitations couple collectively to the optical mode supported by the cavity. These polaritons obey bosonic statistics at moderate densities, are stable at room temperature, and have been observed to form a condensed or lasing state. Understanding the optimal conditions for polariton condensation requires careful modeling of the complex photophysics of organic molecules. In this article, we introduce the basic physics of exciton-polaritons and condensation and review experiments demonstrating polariton condensation in molecular materials.
CITATION STYLE
Keeling, J., & Kéna-Cohen, S. (2020, April 20). Bose-einstein condensation of exciton-polaritons in organic microcavities. Annual Review of Physical Chemistry. Annual Reviews Inc. https://doi.org/10.1146/annurev-physchem-010920-102509
Mendeley helps you to discover research relevant for your work.