Predicting the failure of dental implants using supervised learning techniques

18Citations
Citations of this article
79Readers
Mendeley users who have this article in their library.

Abstract

Prosthodontic treatment has been a crucial part of dental treatment for patients with full mouth rehabilitation. Dental implant surgeries that replace conventional dentures using titanium fixtures have become the top choice. However, because of the wide-ranging scope of implant surgeries, patients' body conditions, surgeons' experience, and the choice of implant system should be considered during treatment. The higher price charged by dental implant treatments compared to conventional dentures has led to a rush among medical staff; therefore, the future impact of surgeries has not been analyzed in detail, resulting in medial disputes. Previous literature on the success factors of dental implants is mainly focused on single factors such as patients' systemic diseases, operation methods, or prosthesis types for statistical correlation significance analysis. This study developed a prediction model for providing an early warning mechanism to reduce the chances of dental implant failure. We collected the clinical data of patients who received artificial dental implants at the case hospital for a total of 8 categories and 20 variables. Supervised learning techniques such as decision tree (DT), support vector machines, logistic regressions, and classifier ensembles (i.e., Bagging and AdaBoost) were used to analyze the prediction of the failure of dental implants. The results show that DT with both Bagging and Adaboost techniques possesses the highest prediction performance for the failure of dental implant (area under the receiver operating characteristic curve, AUC: 0.741); the analysis also revealed that the implant systems affect dental implant failure. The model can help clinical surgeons to reduce medical failures by choosing the optimal implant system and prosthodontics treatments for their patients.

Cite

CITATION STYLE

APA

Liu, C. H., Lin, C. J., Hu, Y. H., & You, Z. H. (2018). Predicting the failure of dental implants using supervised learning techniques. Applied Sciences (Switzerland), 8(5). https://doi.org/10.3390/app8050698

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free