Assessing potential groundwater-level declines from future withdrawals in the hualapai valley, northwestern arizona

2Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A numerical groundwater flow model of the Hualapai Valley Basin in northwestern Arizona was developed to assist water-resource managers in understanding the potential effects of projected groundwater withdrawals on groundwater levels in the basin. The Hualapai Valley Hydrologic Model (HVHM) simulates the hydrologic system for the years 1935 through 2219, including future withdrawal scenarios that simulate large-scale agricultural expansion with and without enhanced groundwater recharge from potential new infiltration basin projects. HVHM is a highly parameterized model (75,586 adjustable parameters) capable of simulating grid-scale variability in aquifer properties (for example, conductivity, specific yield, and specific storage) and system stresses (for instance, natural recharge and groundwater withdrawals). Parameter estimation and uncertainty quantification were performed using an iterative ensemble smoother software (PESTPP-IES) to produce an ensemble of models fit to historical data. Results via the future withdrawal scenario from this ensemble indicate that mean groundwater level will decline at wells in the Kingman subbasin 87 to 128 feet by the year 2050 and 204 to 241 feet by the year 2080. Mean groundwater level is expected to decline at wells in the Hualapai subbasin between 44 and 210 feet by 2050 and between 107 and 350 feet by 2080. The enhanced recharge scenario results show potential for these declines to be partially mitigated in the Kingman subbasin by between 8 and 23 feet in 2050 and between 23 and 43 feet in 2080. The enhanced recharge scenario has no simulated effect on groundwater levels in the Hualapai subbasin. All planned enhanced infiltration projects are located in the Kingman subbasin, which is simulated to become hydraulically disconnected from the Hualapai subbasin owing to groundwater-level declines before 2050. Mean depth to water in the Kingman subbasin as simulated in the future withdrawal scenario will exceed 1,200 feet between the years 2155 and 2214 (median year 2171). In the future withdrawal plus enhanced recharge scenario, mean depth to water in the Kingman subbasin exceeds 1,200 feet between the years 2163 and 2207 (median year 2180), except for one model realization in which the subbasin does not reach an mean depth to water of 1,200 feet by the end of forecast simulation (year 2220). Simulated dewatering of the basin margins reduces scenario pumping rates by as much as 7 percent in 2029 and 12 percent in 2079 below specified rates. Forecasts of groundwater-level declines are based on the reduced simulated pumping rates.

Cite

CITATION STYLE

APA

Knight, J. E., Gungle, B., & Kennedy, J. R. (2021). Assessing potential groundwater-level declines from future withdrawals in the hualapai valley, northwestern arizona. USGS Scientific Investigations Report, 20215077. https://doi.org/10.3133/sir20215077

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free