ACT-387042 and ACT-292706 are two novel bacterial topoisomerase inhibitors with broad-spectrum activity against Gram-positive and -negative bacteria, including methicillin-resistant Staphylococcus aureus and penicillin- and fluoroquinolone-resistant Streptococcus pneumoniae. We used the neutropenic murine thigh infection model to characterize the pharmacokinetics (PK)/pharmacodynamics (PD) of these investigational compounds against a group of 10 S. aureus and S. pneumoniae isolates with phenotypic resistance to beta-lactams and fluoroquinolones. The in vitro activities of the two compounds were very similar (MIC range, 0.03 to 0.125 mg/liter). Plasma pharmacokinetics were determined for each compound by using four escalating doses administered by the subcutaneous route. In treatment studies, mice had 107.4 to 108 CFU/thigh at the start of therapy with ACT-387042 and 106.7 to 108.3 CFU/thigh at the start of therapy with ACT-292706. A dose-response relationship was observed with all isolates over the dose range. Maximal kill approached 3 to 4 log10 CFU/thigh compared to the burden at the start of therapy for the highest doses examined. There was a strong relationship between the PK/PD index AUC/MIC ratio (area under the concentration-time curve over 24 h in the steady state divided by the MIC) and therapeutic efficacy in the model (R2, 0.63 to 0.82). The 24-h free-drug AUC/MIC ratios associated with net stasis for ACT-387042 against S. aureus and S. pneumoniae were 43 and 10, respectively. The 24-h free-drug AUC/MIC ratios associated with net stasis for ACT-292706 against S. aureus and S. pneumoniae were 69 and 25, respectively. The stasis PD targets were significantly lower for S. pneumoniae (P < 0.05) for both compounds. The 1-log-kill AUC/MIC ratio targets were ∼2- to 4-fold higher than stasis targets. Methicillin, penicillin, or ciprofloxacin resistance did not alter the magnitude of the AUC/MIC ratio required for efficacy. These results should be helpful in the design of clinical trials for topoisomerase inhibitors.
CITATION STYLE
Lepak, A. J., Seiler, P., Surivet, J. P., Ritz, D., Kohl, C., & Andes, D. R. (2016). In vivo pharmacodynamic target investigation of two bacterial topoisomerase inhibitors, ACT-387042 and ACT-292706, in the neutropenic murine thigh model against Streptococcus pneumoniae and Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 60(6), 3626–3632. https://doi.org/10.1128/AAC.00363-16
Mendeley helps you to discover research relevant for your work.