Pretreatments are often needed for lignocellulosic biomass feedstocks before either thermochemical or biochemical conversion processes. Our previous research has demonstrated the potential of bioleaching, with its superior capability of removing certain inorganic compounds compared to water leaching, to improve biomass quality for thermochemical conversion in biofuel production. In this study, the bioleaching process was scaled up from 250 mL beakers to be carried out in custom-designed 2.5 L bioreactors. The fungus Aspergillus niger was used in the bioreactors for leaching sorghum straw biomass with an initial ash content of 6.0%. The effects of three operating parameters on leaching efficiency (i.e., residual ash content) were extensively studied, including the fungal mass added to each reactor, leaching time, and glucose concentration in the starting liquid phase. Response surface methodology (RSM) was used for the experiment design. The results showed that the average residual ash content of the sorghum feedstock after bioleaching was significantly lower (3.63 ± 0.19%) than that of the ash content (4.72 ± 0.13%) after water leaching (p < 0.00001). Among the three parameters, glucose concentration in the starting liquid phase had the most significant effect on leaching effectiveness (p = 0.0079). Based on this outcome, subsequent bioleaching experiments yielded reductions in residual ash content to as low as 2.73%.
CITATION STYLE
Zhang, N., Walker, T., Jenkins, B., Anderson, S., & Zheng, Y. (2021). Bioleaching of sorghum straw in bioreactors for biomass cleaning. Fermentation, 7(4). https://doi.org/10.3390/fermentation7040270
Mendeley helps you to discover research relevant for your work.