The performance and fuel consumption of hybrid electric vehicle heavily depend on the EMS (energy management strategy). This paper presents a novel EMS for a series hybrid electric rescue vehicle. Firstly, considering the working characteristics of engine and battery, the EMS combining logic threshold and fuzzy control is proposed. Secondly, a fuzzy control optimization method based on IQGA (improved quantum genetic algorithm) is designed to achieve better fuel efficiency. Then, the modeling and simulation are completed by using MATLAB/Simulink; the results demonstrate that the fuel consumption can be decreased by 5.17% after IQGA optimization and that the optimization effect of IQGA is better than that of GA (genetic algorithm) and QGA (quantum genetic algorithm). Finally, the HILS (hardware in loop simulation) platform is constructed with dSPACE; the HILS experiment shows that the proposed EMS can effectively improve the vehicle working efficiency, which can be applied to practical application.
CITATION STYLE
Li, P., Yan, J., Tu, Q., Pan, M., & Xue, J. (2018). A novel energy management strategy for series hybrid electric rescue vehicle. Mathematical Problems in Engineering, 2018. https://doi.org/10.1155/2018/8450213
Mendeley helps you to discover research relevant for your work.