Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment

18Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A simplistic and low-cost method that dramatically improves the performance of solution-grown hematite photoanodes for solar-driven water splitting through incorporation of nanohybrid metal oxide overlayers was developed. By heating the α-Fe2O3/SnO2-TiO2 electrode in an inert atmosphere, such as argon or nitrogen, the photocurrent increased to over 2 mA/cm2 at 1.23 V versus a reversible hydrogen electrode, which is 10 times higher than that of pure hematite under 1 sun (100 mW/cm2, AM 1.5G) light illumination. For the first time, we found a significant morphological difference between argon and nitrogen gas heat-treated hematite films and discussed the consequences for photoresponse. The origin for the enhancement, probed via theoretical modeling, stems from the facile incorporation of low formation energy dopants into the Fe2O3 layer at the interface of the metal oxide nanohybrid overlayer, which decreases recombination by increasing the electrical conductivity of Fe2O3. These dopants diffuse from the overlayer into the α-Fe2O3 layer readily under inert gas heat treatment. This simple yet effective strategy could be applied to other dopants to increase hematite performance for solar energy conversion applications.

Cite

CITATION STYLE

APA

Ho-Kimura, S., Williamson, B. A. D., Sathasivam, S., Moniz, S. J. A., He, G., Luo, W., … Parkin, I. P. (2019). Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment. ACS Omega, 4(1), 1449–1459. https://doi.org/10.1021/acsomega.8b02444

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free