Effect of cross-linking density on the structures and properties of carbodiimide-treated gelatin matrices as limbal stem cell niches

19Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

Given that human amniotic membrane is a valuable biological material not readily available for corneal epithelial tissue engineering, gelatin is considered as a potential alternative to construct a cellular microenvironment. This study investigates, for the first time, the influence of cross-linking density of carbodiimide-treated gelatin matrices on the structures and properties of artificial limbal stem cell niches. Our results showed that an increase in the carbodiimide concentration from 1.5 to 15 mM leads to an upward trend in the structural and suture strength of biopolymers. Furthermore, increasing number of cross-linking bridges capable of linking protein molecules together may reduce their crystallinity. For the samples treated with 50 mM of cross-linker (i.e., the presence of excess N-substituted carbodiimide), abundant N-acylurea was detected, which was detrimental to the in vitro and in vivo ocular biocompatibility of gelatin matrices. Surface roughness and stiffness of biopolymer substrates were found to be positively correlated with carbodiimide-induced cross-link formation. Significant increases of integrin β1 expression, metabolic activity, and ABCG2 expression were noted as the cross-linker concentration increased, suggesting that the bulk crystalline structure and surface roughness/stiffness of niche attributed to the number of cross-linking bridges may have profound effects on a variety of limbal epithelial cell behaviors, including adhesion, proliferation, and stemness maintenance. In summary, taking the advantages of carbodiimide cross-linking-mediated development of gelatin matrices, new niches with tunable cross-linking densities can provide a significant boost to maintain the limbal stem cells during ex vivo expansion.

References Powered by Scopus

Matrix Elasticity Directs Stem Cell Lineage Specification

11569Citations
N/AReaders
Get full text

Designing materials to direct stem-cell fate

1260Citations
N/AReaders
Get full text

Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells

1254Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Novel Trends in Hydrogel Development for Biomedical Applications: A Review

181Citations
N/AReaders
Get full text

Bioengineering Approaches for Corneal Regenerative Medicine

77Citations
N/AReaders
Get full text

Carbodiimide-assisted zwitterionic modification of poly(piperazine amide) thin-film composite membrane for enhanced separation and anti-depositing performances to cationic/anionic dye aqueous solutions

33Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Lai, J. Y., Luo, L. J., & Ma, D. H. K. (2018). Effect of cross-linking density on the structures and properties of carbodiimide-treated gelatin matrices as limbal stem cell niches. International Journal of Molecular Sciences, 19(11). https://doi.org/10.3390/ijms19113294

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 8

57%

Researcher 4

29%

Professor / Associate Prof. 2

14%

Readers' Discipline

Tooltip

Chemistry 5

45%

Materials Science 2

18%

Engineering 2

18%

Medicine and Dentistry 2

18%

Save time finding and organizing research with Mendeley

Sign up for free