Thermodynamic analysis of ligand binding and ligand binding-induced tertiary structure formation by the thiamine pyrophosphate riboswitch

75Citations
Citations of this article
93Readers
Mendeley users who have this article in their library.

Abstract

The thi-box riboswitch regulates gene expression in response to the intracellular concentration of thiamine pyrophosphate (TPP) in archaea, bacteria, and eukarya. To complement previous biochemical, genetic, and structural studies of this phylogenetically widespread RNA domain, we have characterized its interaction with TPP by isothermal titration calorimetry. This shows that TPP binding is highly dependent on Mg2+ concentration. The dissociation constant decreases from ∼200 nM at 0.5 mM Mg2+ concentration to ∼9 nM at 2.5 mM Mg2+ concentration. Binding is enthalpically driven, but the unfavorable entropy of binding decreases as Mg2+ concentration rises, suggesting that divalent cations serve to pre-organize the RNA. Mutagenesis, biochemical analysis, and a new crystal structure of the riboswitch suggest that a critical element that participates in organizing the riboswitch structure is the tertiary interaction formed between the P3 and L5 regions. This tertiary contact is distant from the TPP binding site, but calorimetric analysis reveals that even subtle mutations in L5 can have readily detectable effects on TPP binding. The thermodynamic signatures of these mutations, namely decreased favorable enthalpy of binding and small effects on entropy of binding, are consistent with the P3-L5 association contributing allosterically to TPP-induced compaction of the RNA. Published by Cold Spring Harbor Laboratory Press. Copyright © 2010 RNA Society.

Cite

CITATION STYLE

APA

Kulshina, N., Edwards, T. E., & Ferré-D’Amaré, A. R. (2010). Thermodynamic analysis of ligand binding and ligand binding-induced tertiary structure formation by the thiamine pyrophosphate riboswitch. RNA, 16(1), 186–196. https://doi.org/10.1261/rna.1847310

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free