In this study, the thermodynamic behavior of a combined cycle power plant with integrated solar-driven inlet air cooling was simulated for Tehran, Phoenix, and Houston during warm-hot seasons. A considerable reduction in the output power was realized during hot ambient conditions due to the lower density of the air and lower mass flow rate to the turbines. The output power decreases from 306.6 to 260.8 MW as ambient temperature increases from 15 to 45 °C. This research focuses on utilizing solar cooling systems to achieve low inlet air temperature to generate high-electricity yields. Four different types of solar collectors and two different absorption chiller units were selected and simulated for each city to achieve the required goal. It was identified that integrating a solar inlet air cooling (SIAC) system can avert the reduction in output power with no impact on efficiency. The humid climatic condition in Houston and the low electricity cost in Tehran posed some challenges in designing a feasible SIAC system. However, by optimizing the solar collectors and cooling capacities, an optimal solution for utilizing inlet air cooling in humid climates is presented. In terms of overall impact, the evacuated flat plate collector (EFPC) coupled with a double-effect absorption chiller displayed the best economic performance among the four variants under study. In Phoenix, this combination can maintain output power during hot days with a DPR of 2.96 years.
CITATION STYLE
Roshanzadeh, B., Asadi, A., & Mohan, G. (2023). Technical and Economic Feasibility Analysis of Solar Inlet Air Cooling Systems for Combined Cycle Power Plants. Energies, 16(14). https://doi.org/10.3390/en16145352
Mendeley helps you to discover research relevant for your work.