An acyclic coloring of a graph $G$ is a coloring of its vertices such that: (i) no two neighbors in $G$ are assigned the same color and (ii) no bicolored cycle can exist in $G$. The acyclic chromatic number of $G$ is the least number of colors necessary to acyclically color $G$, and is denoted by $a(G)$. We show that any graph of maximum degree $\Delta$ has acyclic chromatic number at most $\frac{\Delta (\Delta -1) }{ 2}$ for any $\Delta \geq 5$, and we give an $O(n \Delta^2)$ algorithm to acyclically color any graph of maximum degree $\Delta$ with the above mentioned number of colors. This result is roughly two times better than the best general upper bound known so far, yielding $a(G) \leq \Delta (\Delta -1) +2$. By a deeper study of the case $\Delta =5$, we also show that any graph of maximum degree $5$ can be acyclically colored with at most $9$ colors, and give a linear time algorithm to achieve this bound.
CITATION STYLE
Fertin, G., & Raspaud, A. (2005). Acyclic Coloring of Graphs of Maximum Degree $\Delta$. Discrete Mathematics & Theoretical Computer Science, DMTCS Proceedings vol. AE,...(Proceedings). https://doi.org/10.46298/dmtcs.3450
Mendeley helps you to discover research relevant for your work.