Resolvin E1 Inhibits Substance P-Induced Potentiation of TRPV1 in Primary Sensory Neurons

42Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The neuropeptide substance P (SP) is expressed in primary sensory neurons and is commonly regarded as a "pain" neurotransmitter. Upon peripheral inflammation, SP activates the neurokinin-1 (NK-1) receptor and potentiates activity of transient receptor potential vanilloid subtype 1 (TRPV1), which is coexpressed by nociceptive neurons. Therefore, SP functions as an important neurotransmitter involved in the hypersensitization of inflammatory pain. Resolvin E1 (RvE1), derived from omega-3 polyunsaturated fatty acids, inhibits TRPV1 activity via activation of the chemerin 23 receptor (ChemR23) - an RvE1 receptor located in dorsal root ganglion neurons - and therefore exerts an inhibitory effect on inflammatory pain. We demonstrate here that RvE1 regulates the SP-induced potentiation of TRPV1 via G-protein coupled receptor (GPCR) on peripheral nociceptive neurons. SP-induced potentiation of TRPV1 inhibited by RvE1 was blocked by the Gαi-coupled GPCR inhibitor pertussis toxin and the G-protein inhibitor GDPβ-S. These results indicate that a low concentration of RvE1 strongly inhibits the potentiation of TRPV1, induced by the SP-mediated activation of NK-1, via a GPCR signaling pathway activated by ChemR23 in nociceptive neurons. RvE1 might represent a new therapeutic target for the treatment of inflammatory pain as a prospective endogenous inhibitor that strongly inhibits TRPV1 activity associated with peripheral inflammation.

Cite

CITATION STYLE

APA

Jo, Y. Y., Lee, J. Y., & Park, C. K. (2016). Resolvin E1 Inhibits Substance P-Induced Potentiation of TRPV1 in Primary Sensory Neurons. Mediators of Inflammation, 2016. https://doi.org/10.1155/2016/5259321

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free