Unicité dans l3(ℝ3) et d'autres espaces fonctionnels limites pour Navier-Stokes

70Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

The main result of this paper is the proof of uniqueness for mild solutions of the Navier-Stokes equations in L3(ℝ3). This result is extended as well to some Morrey-Campanato spaces.

References Powered by Scopus

Sur le mouvement d'un liquide visqueux emplissant l'espace

2212Citations
N/AReaders
Get full text

Strong L<sup>p</sup>-solutions of the Navier-Stokes equation in R<sup>m</sup>, with applications to weak solutions

1053Citations
N/AReaders
Get full text

Semilinear heat equations and the navier-stokes equation with distributions in new function spaces as initial data

333Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Nonuniqueness of weak solutions to the Navier-Stokes equation

204Citations
N/AReaders
Get full text

Chapter 3 Harmonic analysis tools for solving the incompressible Navier-Stokes equations

196Citations
N/AReaders
Get full text

Ergodicity for the 3D stochastic Navier-Stokes equations

136Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Furioli, G., Lemarié-Rieusset, P. G., & Terraneo, E. (2000). Unicité dans l3(ℝ3) et d’autres espaces fonctionnels limites pour Navier-Stokes. Revista Matematica Iberoamericana, 16(3), 605–667. https://doi.org/10.4171/rmi/286

Readers over time

‘12‘15‘16‘17‘19‘2100.250.50.751

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 3

60%

Professor / Associate Prof. 2

40%

Readers' Discipline

Tooltip

Mathematics 3

75%

Engineering 1

25%

Save time finding and organizing research with Mendeley

Sign up for free
0