Hispidin induces autophagic and necrotic death in SGC-7901 gastric cancer cells through lysosomal membrane permeabilization by inhibiting tubulin polymerization

26Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Hispidin and its derivatives are widely distributed in edible mushrooms. Hispidin is more cytotoxic to A549, SCL-1, Bel7402 and Capan-1 cancer cells than to MRC5 normal cells; by contrast, hispidin protects H9c2 cardiomyoblast cells from hydrogen peroxide-induced or doxorubicin-induced apoptosis. Consequently, further research on how hispidin affects normal and cancer cells may help treat cancer and reduce chemotherapy-induced side effects. This study showed that hispidin caused caspaseindependent death in SGC-7901 cancer cells but not in GES-1 normal cells. Hispidininduced increases in LC3-II occurred in SGC-7901 cells in a time independent manner. Cell death can be partially inhibited by treatment with ATG5 siRNA but not by autophagy or necroptosis inhibitors. Ultrastructural evidence indicated that hispidininduced necrotic cell death involved autophagy. Hispidin-induced lysosomal membrane permeabilization (LMP) related to complex cell death occurred more drastically in SGC-7901 cells than in GES-1 cells. Ca2+ rather than cathepsins from LMP contributed more to cell death. Hispidin induced microtubule depolymerization, which can cause LMP, more drastically in SGC-7901 cells than in GES-1 cells. At 4.1 μM, hispidin promoted cell-free tubulin polymerization but at concentrations higher than 41 μM, hispidin inhibited polymerization. Hispidin did not bind to tubulin. Alterations in microtubule regulatory proteins, such as stathmin phosphorylation at Ser16, contributed to hispidininduced SGC-7901 cell death. In conclusion, hispidin at concentrations higher than 41 μM may inhibit tubulin polymerization by modulating microtubule regulatory proteins, such as stathmin, causing LMP and complex SGC-7901 cell death. This mechanism suggests a promising novel treatment for human cancer.

Cite

CITATION STYLE

APA

Lv, L. X., Zhou, Z. X., Zhou, Z., Zhang, L. J., Yan, R., Zhao, Z., … Li, Y. Q. (2017). Hispidin induces autophagic and necrotic death in SGC-7901 gastric cancer cells through lysosomal membrane permeabilization by inhibiting tubulin polymerization. Oncotarget, 8(16), 26992–27006. https://doi.org/10.18632/oncotarget.15935

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free