Phytofabrication of bioinduced silver nanoparticles for biomedical applications

82Citations
Citations of this article
71Readers
Mendeley users who have this article in their library.

Abstract

Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs) in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60-80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus). Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs.

Cite

CITATION STYLE

APA

Ahmad, N., Bhatnagar, S., Ali, S. S., & Dutta, R. (2015). Phytofabrication of bioinduced silver nanoparticles for biomedical applications. International Journal of Nanomedicine, 10, 7019–7030. https://doi.org/10.2147/IJN.S94479

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free