Moduli stabilisation for chiral global models

73Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We combine moduli stabilisation and (chiral) model building in a fully consistent global set-up in Type IIB/F-theory. We consider compactifications on Calabi-Yau orientifolds which admit an explicit description in terms of toric geometry. We build globally consistent compactifications with tadpole and Freed-Witten anomaly cancellation by choosing appropriate brane set-ups and world-volume fluxes which also give rise to SU(5)- or MSSM-like chiral models. We fix all the Kähler moduli within the Kähler cone and the regime of validity of the 4D effective field theory. This is achieved in a way compatible with the local presence of chirality. The hidden sector generating the non-perturbative effects is placed on a del Pezzo divisor that does not have any chiral intersection with any other brane. In general, the vanishing D-term condition implies the shrinking of the rigid divisor supporting the visible sector. However, we avoid this problem by generating r < n D-term conditions on a set of n intersecting divisors. The remaining (n-r) flat directions are fixed by perturbative corrections to the Kähler potential. We illustrate our general claims in an explicit example. We consider a K3-fibred Calabi-Yau with four Kähler moduli, that is a hypersurface in a toric ambient space and admits a 'simple' F-theory up-lift. We present explicit choices of brane set-ups and fluxes which lead to three different phenomenological scenarios: the first with GUT-scale strings and TeV-scale SUSY by fine-tuning the background fluxes; the second with an exponentially large value of the volume and TeV-scale SUSY without fine-tuning the background fluxes; and the third with a very anisotropic configuration that leads to TeV-scale strings and two micron-sized extra dimensions. The K3 fibration structure of the Calabi-Yau three-fold is also particularly suitable for cosmological purposes.

Cite

CITATION STYLE

APA

Cicoli, M., Mayrhofer, C., & Valandro, R. (2012). Moduli stabilisation for chiral global models. Journal of High Energy Physics, 2012(2). https://doi.org/10.1007/JHEP02(2012)062

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free