Abrasive waterjet machining (AWJM), a known metal cutting process in manufacturing, is likely to be improved with the selection and use of the most influential parameters in machining decision-making. This work illustrates the development of two multicriteria indicators to optimize parameters for the abrasive waterjet machining process, providing optimization information for the surface morphology problem. The evaluation based on the distance from average solution (EDAS) method was used as the first indicator while the desirability function analysis (DFA) method reflects the second indicator. The results demonstrate a huge promise of both indicators, EDAS and DFA, to develop procedures for optimizing the parameters of Ti-6Al-2Sn-4Zr-2Mo alpha-beta alloy through the abrasive waterjet machining process. For the EDAS method, experimental trial 7 provided the best results with the water jet pressure of 220 bar, traverse speed of 40mm/min, and standoff distance of 1mm. The corresponding material removal rate is 151.667mm3/min while the roughness average is 2.76mm. The DFA method also provided the same results as those of the EDAS method. The present study is evidence of optimization of the parameters of Ti-6Al-2Sn-4Zr-2Mo alpha-beta alloy using the AWJM process. This warrants an intervention to enhance productivity and the economic gains of the company.
CITATION STYLE
NWANKİTİ, U. S., & OKE, S. (2022). Optimal Cutting Conditions of Abrasive Waterjet Cutting for Ti-6Al-2Sn-2Mo Alpha-Beta Alloy Using EDAS and DFA Methods. Gazi University Journal of Science Part A: Engineering and Innovation, 9(3), 233–250. https://doi.org/10.54287/gujsa.1135609
Mendeley helps you to discover research relevant for your work.