Targeted Recombinant Progeny: A design for ultra-high resolution mapping of Quantitative Trait Loci in crosses between inbred or pure lines

2Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: High-resolution mapping of the loci (QTN) responsible for genetic variation in quantitative traits is essential for positional cloning of candidate genes, and for effective marker assisted selection. The confidence interval (QTL) flanking the point estimate of QTN-location is proportional to the number of individuals in the mapping population carrying chromosomes recombinant in the given interval. Consequently, many designs for high resolution QTN mapping are based on increasing the proportion of recombinants in the mapping population. The "Targeted Recombinant Progeny" (TRP) design is a new design for high resolution mapping of a target QTN in crosses between pure, or inbred lines. It is a three-generation procedure generating a large number of recombinant individuals within a QTL previously shown to contain a QTN. This is achieved by having individuals that carry chromosomes recombinant across the target QTL interval as parents of a large mapping population; most of whom will therefore carry recombinant chromosomes targeted to the given QTL. The TRP design is particularly useful for high resolution mapping of QTN that differentiate inbred or pure lines, and hence are not amenable to high resolution mapping by genome-wide association tests. Results: In the absence of residual polygenic variation, population sizes required for achieving given mapping resolution by the TRP-F2 design relative to a standard F2 design ranged from 0.289 for a QTN with standardized allele substitution effect = 0.2, mapped to an initial QTL of 0.2 Morgan to 0.041 for equivalent QTN mapped to an initial QTL of 0.02 M. In the presence of residual polygenic variation, the relative effectiveness of the TRP design ranges from 1.068 to 0.151 for the same initial QTL intervals and QTN effect. Thus even in the presence of polygenic variation, the TRP can still provide major savings. Simulation showed that mapping by TRP should be based on 30-50 markers spanning the initial interval; and on at least 50 or more G2 families representing this number of recombination points,. Conclusions: The TRP design can be an effective procedure for achieving high and ultra-high mapping resolution of a target QTN previously mapped to a known confidence interval (QTL).

Cite

CITATION STYLE

APA

Heifetz, E. M., & Soller, M. (2015). Targeted Recombinant Progeny: A design for ultra-high resolution mapping of Quantitative Trait Loci in crosses between inbred or pure lines. BMC Genetics, 16(1). https://doi.org/10.1186/s12863-015-0206-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free