Understanding and controlling the properties of water-splitting assemblies in dye-sensitized photoelectrosynthesis cells is a key to the exploitation of their properties. We demonstrate here that, following surface loading of a [Ru(bpy)3]2+ (bpy = 2,2′-bipyridine) chromophore on nanoparticle electrodes, addition of the molecular catalysts, Ru(bda)(L)2 (bda = 2,2′-bipyridine-6,6′-dicarboxylate) with phosphonate or pyridyl sites for water oxidation, gives surfaces with a 5:1 chromophore to catalyst ratio. Addition of the surface-bound phosphonate derivatives with L = 4-pyridyl phosphonic acid or diethyl 3-(pyridin-4-yloxy)decyl-phosphonic acid, leads to well-defined surfaces but, following oxidation to Ru(III), they undergo facile, on-surface dimerization to give surface-bound, oxo-bridged dimers. The dimers have a diminished reactivity toward water oxidation compared to related monomers in solution. By contrast, immobilization of the Ru-bda catalyst on TiO2 with the 4,4′-dipyridyl anchoring ligand can maintain the monomeric structure of catalyst and gives relatively stable photoanodes with photocurrents that reach to 1.7 mA cm−2 with an optimized, applied bias photon-to-current efficiency of 1.5%.
CITATION STYLE
Zhu, Y., Wang, D., Huang, Q., Du, J., Sun, L., Li, F., & Meyer, T. J. (2020). Stabilization of a molecular water oxidation catalyst on a dye−sensitized photoanode by a pyridyl anchor. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-18417-5
Mendeley helps you to discover research relevant for your work.