Synergistic effect of natural chickpea leaf exudates acids in heterocyclization: A greener protocol for benzopyran synthesis

9Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Without using any toxic or hazardous reagent, ligand, acid, transition metal catalyst, additives/promoters and organic solvent, green Knoevenagel condensation and tandem Knoevenagel–Michael reactions have been successfully carried out by using chickpea leaf exudates as a naturally sourced Bronsted acid type bio-catalyst. The reaction proceeds in neat chickpea leaf exudates at room temperature in aqueous conditions in very short reaction times, and therefore, it is an evergreen and environmentally sound alternative to the existing protocols for benzopyran synthesis. In comparison to the conventional methods, this synthetic pathway complies with several key requirements of green chemistry principles such as the utilization of biodegradable catalyst obtained from renewable feedstock, auxiliary aqueous conditions, along with waste prevention. The same protocol was also extended to the synthesis of 2H-xanthene-1,8-diones by condensation of aromatic aldehydes with dimedone achieving excellent yields. Thus, the reported protocol offers an attractive option because of its ecological safety, environmental acceptance, sustainability, low-cost straightforward work-up procedure and with excellent values of green chemistry metrics as compared with other reported methods.

Cite

CITATION STYLE

APA

Mali, S., Shinde, S., Damte, S., & Patil, S. (2018). Synergistic effect of natural chickpea leaf exudates acids in heterocyclization: A greener protocol for benzopyran synthesis. Royal Society Open Science, 5(2). https://doi.org/10.1098/rsos.170333

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free