Aims: Indirect data suggest that delayed recovery of intracellular pH (pHi) during reperfusion is involved in postconditioning protection, and calpain activity has been shown to be pH-dependent. We sought to characterize the effect of ischaemic postconditioning on pHi recovery during reperfusion and on calpain-dependent proteolysis, an important mechanism of myocardial reperfusion injury. Methods and results: Isolated Sprague-Dawley rat hearts were submitted to 40 min of ischaemia and different reperfusion protocols of postconditioning and acidosis. pHi was monitored by 31P-NMR spectroscopy. Myocardial cell death was determined by lactate dehydrogenase (LDH) and triphenyltetrazolium staining, and calpain activity by western blot measurement of α-fodrin degradation. In control hearts, pHi recovered within 1.5 ± 0.24 min of reperfusion. Postconditioning with 6 cycles of 10 s ischaemia-reperfusion delayed pHi recovery slightly to 2.5 ± 0.2 min and failed to prevent calpain-mediated α-fodrin degradation or to elicit protection. Lowering perfusion flow to 50% during reperfusion cycles or shortening the cycles (12 cycles of 5 s ischemia-reperfusion) resulted in a further delay in pHi recovery (4.1 ± 0.2 and 3.5 ± 0.3 min, respectively), attenuated α-fodrin proteolysis, improved functional recovery, and reduced LDH release (47 and 38%, respectively, P < 0.001) and infarct size (36 and 32%, respectively, P < 0.001). This cardioprotection was identical to that produced by lowering the pH of the perfusion buffer to 6.4 during the first 2 min of reperfusion or by calpain inhibition with MDL-28170. Conclusion: These results provide direct evidence that postconditioning protection depends on prolongation of intracellular acidosis during reperfusion and indicate that inhibited calpain activity could contribute to this protection. © The Author 2008.
CITATION STYLE
Inserte, J., Barba, I., Hernando, V., & Garcia-Dorado, D. (2009). Delayed recovery of intracellular acidosis during reperfusion prevents calpain activation and determines protection in postconditioned myocardium. Cardiovascular Research, 81(1), 116–122. https://doi.org/10.1093/cvr/cvn260
Mendeley helps you to discover research relevant for your work.