Protostellar spin-down: A planetary lift?

11Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

When they first appear in the HR diagram, young stars rotate at a mere 10 per cent of their break-up velocity. They must have lost most of the angular momentum initially contained in the parental cloud, the so-called angular momentum problem. We investigate here a new mechanism by which large amounts of angular momentum might be shed from young stellar systems, thus yielding slowly rotating young stars. Assuming that planets promptly form in circumstellar discs and rapidlymigrate close to the central star, we investigate howthe tidal and magnetic interactions between the protostar, its close-in planet(s), and the inner circumstellar disc can efficiently remove angular momentum from the central object. We find that neither the tidal torque nor the variety of magnetic torques acting between the star and the embedded planet are able to counteract the spin-up torques due to accretion and contraction. Indeed, the former are orders of magnitude weaker than the latter beyond the corotation radius and are thus unable to prevent the young star from spinning up. We conclude that star-planet interaction in the early phases of stellar evolution does not appear as a viable alternative to magnetic star-disc coupling to understand the origin of the low angular momentum content of young stars.

Cite

CITATION STYLE

APA

Bouvier, J., & Cébron, D. (2015). Protostellar spin-down: A planetary lift? Monthly Notices of the Royal Astronomical Society, 453(4), 3720–3728. https://doi.org/10.1093/mnras/stv1824

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free