Evidence of triggered star formation in G327.3-0.6

19Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Aims. Expanding HII regions and propagating shocks are common in the environment of young high-mass star-forming complexes. They can compress a pre-existing molecular cloud and trigger the formation of dense cores. We investigate whether these phenomena can explain the formation of high-mass protostars within an infrared dark cloud located at the position of G327.3-0.6 in the Galactic plane, in between two large infrared bubbles and two HII regions. Methods. The region of G327.3-0.6 was imaged at 450 μm with the CEA P-ArTéMiS bolometer array on the Atacama Pathfinder EXperiment telescope in Chile. APEX/LABOCA and APEX-2A, and Spitzer/IRAC and MIPS archives data were used in this study. Results. Ten massive cores were detected in the P-ArTéMiS image, embedded within the infrared dark cloud seen in absorption at both 8 and 24 μm. Their luminosities and masses indicate that they form high-mass stars. The kinematical study of the region suggests that the infrared bubbles expand toward the infrared dark cloud.Conclusions. Under the influence of expanding bubbles, star formation occurs in the infrared dark areas at the border of HII regions and infrared bubbles. © 2009 ESO.

Author supplied keywords

Cite

CITATION STYLE

APA

Minier, V., André, P., Bergman, P., Motte, F., Wyrowski, F., Le Pennec, J., … Olofsson, H. (2009). Evidence of triggered star formation in G327.3-0.6. Astronomy and Astrophysics, 501(1). https://doi.org/10.1051/0004-6361/200912308

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free