Coherent tunneling via adiabatic passage in a three-well Bose-Hubbard system

34Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We apply the Bose-Hubbard Hamiltonian to a three-well system and show analytically that coherent transport via adiabatic passage (CTAP) of N noninteracting particles across the chain is possible. We investigate the effect of detuning the middle well to recover CTAP when onsite interparticle interactions would otherwise disrupt the transport. The case of small interactions is restated using first-order perturbation theory to develop criteria for adiabaticity that define the regime where CTAP is possible. Within this regime we investigate restricting the Hilbert space to the minimum necessary basis needed to demonstrate CTAP, which dramatically increases the number of particles that can be efficiently considered. Finally, we compare the results of the Bose-Hubbard model to a mean-field three-mode Gross-Pitaevskii analysis for the equivalent system. © 2012 American Physical Society.

Cite

CITATION STYLE

APA

Bradly, C. J., Rab, M., Greentree, A. D., & Martin, A. M. (2012). Coherent tunneling via adiabatic passage in a three-well Bose-Hubbard system. Physical Review A - Atomic, Molecular, and Optical Physics, 85(5). https://doi.org/10.1103/PhysRevA.85.053609

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free