Although classically studied as regulators of cell proliferation and differentiation, mitogen-activated protein kinases (MAPKs) are highly expressed in post-mitotic neurons of the adult nervous system. We have begun investigating the potential role of MAPKs in the regulation of synaptic plasticity in mature neurons. In particular, we have studied the regulation of two MAPK isoforms, p44 and p42 MAPK, in hippocampal long term potentiation (LTP), a system widely studied as a model for the cellular basis of learning and memory. We have found that p42 MAPK, but not p44 MAPK, is activated in area CA1 following direct stimulation of two required components of the LTP induction cascades: protein kinase C and the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor. Furthermore, we have demonstrated that p42 MAPK, but not p44 MAPK, is activated in area CA1 in response to LTP-inducing high frequency stimulation and that this activation requires NMDA receptor stimulation. These data demonstrate that p42 MAPK can be regulated in an activity-dependent manner in the hippocampus and identify it as a potential component of the LTP induction cascades in area CA1. Such observations suggest that p42 MAPK might be an important regulator of synaptic plasticity in post-mitotic neurons.
CITATION STYLE
English, J. D., & David Sweatt, J. (1996). Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. Journal of Biological Chemistry, 271(40), 24329–24332. https://doi.org/10.1074/jbc.271.40.24329
Mendeley helps you to discover research relevant for your work.