Ovarian cancer is the most deadly gynecological cancer, with previous studies implicating lysophosphatidic acid (LPA) in the progression of approximately 90% of all ovarian cancers. LPA potently stimulates the tyrosine phosphorylation of p130Cas, a scaffolding protein, which, upon phosphorylation, recruits an array of signaling molecules to promote tumor cell migration. Our work presented here identifies Gαi2 as the major G protein involved in tyrosine phosphorylation of p130Cas in a panel of ovarian cancer cells consisting of HeyA8, SKOV3, and OVCA429. Our results also indicate that the G12 family of G proteins that are also involved in LPA-mediated migration inhibits tyrosine phosphorylation of p130Cas. Using p130Cas siRNA, we demonstrate that p130Cas is a necessary downstream component of LPA Gαi2-induced migration and collagen-1 invasion of ovarian cancer cells. Considering the fact that LPA stimulates invasive migration through the coordination of multiple downstream signaling pathways, our current study identifies a separate unique signaling node involving p130Cas and Gαi2 in mediating LPA-mediated invasive migration of ovarian cancer cells. © The Author(s) 2013.
CITATION STYLE
Ward, J. D., & Dhanasekaran, D. N. (2012). LPA Stimulates the Phosphorylation of p130Cas via Gαi2 in Ovarian Cancer Cells. Genes and Cancer, 3(9–10), 578–591. https://doi.org/10.1177/1947601913475360
Mendeley helps you to discover research relevant for your work.