Studies have demonstrated the prognosis potential of long noncoding RNAs (lncRNAs) for hepatocellular carcinoma (HCC), but specific lncRNAs for hepatitis B virus-(HBV-) related HCC have rarely been reported. This study was aimed at identifying a lncRNA prognostic signature for HBV-HCC and exploring their underlying functions. The sequencing dataset was collected from The Cancer Genome Atlas database as the training set, while the microarray dataset was obtained from the European Bioinformatics Institute database (E-TABM-36) as the validation set. Univariate and multivariate Cox regression analyses identified that eight lncRNAs (TSPEAR-AS1, LINC00511, LINC01136, MKLN1-AS, LINC00506, KRTAP5-AS1, ZNF252P-AS1, and THUMPD3-AS1) were significantly associated with overall survival (OS). These eight lncRNAs were used to construct a risk score model. The Kaplan-Meier survival curve results showed that this risk score can significantly differentiate the OS between the high-risk group and the low-risk group. Receiver operating characteristic curve analysis demonstrated that this risk score exhibited good prediction effectiveness (area under the curve AUC=0.990 for the training set; AUC=0.903 for the validation set). Furthermore, this lncRNA risk score was identified as an independent prognostic factor in the multivariate analysis after adjusting other clinical characteristics. The crucial coexpression (LINC00511-CABYR, THUMPD3-AS1-TRIP13, LINC01136-SFN, LINC00506-ANLN, and KRTAP5-AS1/TSPEAR-AS1/MKLN1-AS/ZNF252P-AS1-MC1R) or competing endogenous RNA (THUMPD3-AS1-hsa-miR-450a-TRIP13) interaction axes were identified to reveal the possible functions of lncRNAs. These genes were enriched into cell cycle-related biological processes or pathways. In conclusion, our study identified a novel eight-lncRNA prognosis signature for HBV-HCC patients and these lncRNAs may be potential therapeutic targets.
CITATION STYLE
Zhao, X., Bai, Z., Li, C., Sheng, C., & Li, H. (2020). Identification of a Novel Eight-lncRNA Prognostic Signature for HBV-HCC and Analysis of Their Functions Based on Coexpression and ceRNA Networks. BioMed Research International, 2020. https://doi.org/10.1155/2020/8765461
Mendeley helps you to discover research relevant for your work.