Mutual antagonism between hypoxia-inducible factors 1α and 2α regulates oxygen sensing and cardio-respiratory homeostasis

66Citations
Citations of this article
69Readers
Mendeley users who have this article in their library.

Abstract

Breathing and blood pressure are under constant homeostatic regulation to maintain optimal oxygen delivery to the tissues. Chemosensory reflexes initiated by the carotid body and catecholamine secretion from the adrenal medulla are the principalmechanisms for maintaining respiratory and cardiovascular homeostasis; however, the underlying molecular mechanisms are not known. Here, we report that balanced activity of hypoxia-inducible factor-1 (HIF-1) and HIF-2 is critical for oxygen sensing by the carotid body and adrenalmedulla, and for their control of cardio-respiratory function. In Hif2α+/- mice, partial HIF-2α deficiency increased levels of HIF-1α and NADPH oxidase 2, leading to an oxidized intracellular redox state, exaggerated hypoxic sensitivity, and cardio-respiratory abnormalities, which were reversed by treatment with a HIF-1α inhibitor or a superoxide anion scavenger. Conversely, in Hif1α+/- mice, partial HIF-1α deficiency increased levels of HIF-2α and superoxide dismutase 2, leading to a reduced intracellular redox state, blunted oxygen sensing, and impaired carotid body and ventilatory responses to chronic hypoxia, which were corrected by treatment with a HIF-2α inhibitor. None of the abnormalities observed in Hif1α+/- mice or Hif2α+/- mice were observed in Hif1α+/-;Hif2α+/- mice. These observations demonstrate that redox balance, which is determined bymutual antagonism between HIF-α isoforms, establishes the set point for hypoxic sensing by the carotid body and adrenal medulla, and is required for maintenance of cardiorespiratory homeostasis.

Cite

CITATION STYLE

APA

Yuan, G., Peng, Y. J., Reddy, V. D., Makarenko, V. V., Nanduri, J., Khan, S. A., … Prabhakar, N. R. (2013). Mutual antagonism between hypoxia-inducible factors 1α and 2α regulates oxygen sensing and cardio-respiratory homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 110(19). https://doi.org/10.1073/pnas.1305961110

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free