GREEN SYNTHESIS OF SILICON DIOXIDE NANOPARTICLES AND L ARGININE@SILICON DIOXIDE NANOCOMPOSITES USING CELLULOSE OF ZIZYPHUS SPINA-CHRISTI ALONG WITH BIOLOGICAL EVALUATION

7Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

The recent research focused on the green synthesis of silicon dioxide nanoparticles, SiO2@Cellulose of Zizyphus Spina-Christi nanocomposites, and L-Arginine@SiO2@Cellulose of Zizyphus Spina-Christi nanocomposites using cellulose of Zizyphus Spina-Christi as a new green polymeric surfactant. The structures of nanoparticles and nanocomposites were characterized by different spectroscopy and microscopy techniques. Nanoparticles and nanocomposites were utilized to determine the concentration of chromium, cadmium, and lead in COVID-19 patients using double-vortex-ultrasonic assisted surfactant enhanced dispersive liquid-liquid microextraction. Mean recoveries of chromium, cadmium, and lead were obtained in the range of 86-98% with relative standard deviations below 4%. The advantages of the proposed method are green and novel polymer surfactant with low detection limit. Finally, antibacterial activities were investigated. The maximum inhibition zone of L-Arginine@SiO2@Cellulose of Zizyphus Spina-Christi nanocomposites was obtained for Staphylococcus Aureus (21.9±0.4 mm). L-Arginine@SiO2@Cellulose of Zizyphus Spina-Christi nanocomposites have low cytotoxicity against MCF-7 cancer cells. These results indicated the potential ability of L-Arginine@SiO2@Cellulose of Zizyphus Spina-Christi nanocomposites in the determination of metal concentrations in biological samples along with good antibacterial properties and cytotoxic properties.

Cite

CITATION STYLE

APA

Mojaddami, A., Chamkouri, H., Chamkouri, N., Koolivand, Z., & Panahimehr, M. (2023). GREEN SYNTHESIS OF SILICON DIOXIDE NANOPARTICLES AND L ARGININE@SILICON DIOXIDE NANOCOMPOSITES USING CELLULOSE OF ZIZYPHUS SPINA-CHRISTI ALONG WITH BIOLOGICAL EVALUATION. Bulletin of the Chemical Society of Ethiopia, 37(2), 265–276. https://doi.org/10.4314/bcse.v37i2.2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free