A predominant role for inhibition of the adenylate cyclase/protein kinase A pathway in ERK activation by cannabinoid receptor 1 in N1E-115 neuroblastoma cells.

90Citations
Citations of this article
77Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cannabinoids activate several members of the mitogen-activated protein kinase superfamily including p44 and p42 extracellular signal-regulated kinase (ERK). We used N1E-115 neuroblastoma cells and the cannabinoid receptor agonist WIN 55,212-2 (WIN) to examine the signal transduction pathways leading to the activation of ERK. ERK phosphorylation (activation) was measured by Western blot. The EC50 for stimulation of ERK phosphorylation was 10 nm, and this effect was blocked by pertussis toxin and the CB1 (cannabinoid) receptor antagonist SR141716A. The MEK inhibitors PD 98059 and U0126 blocked ERK phosphorylation, as did the adenylate cyclase activator forskolin. The phosphatidylinositol (PI) 3-kinase inhibitor LY 294002 and the Src kinase inhibitor PP2 partially occluded the response but also decreased basal levels of phospho-ERK. The PI 3-kinase and Src pathways are known to promote cell survival in many systems; therefore, MTT (1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan) conversion was used to examine the effects of these inhibitors on cellular viability. LY 294002 decreased the number of viable cells after 18 h of treatment; therefore, the inhibition of ERK by this inhibitor is probably because of cytotoxicity. Forskolin blocked ERK phosphorylation with an EC50 of <3 microm, and the protein kinase A (PKA) inhibitor H-89 enhanced ERK phosphorylation. c-Raf phosphorylation at an inhibitory PKA-regulated site (Ser259) was also reduced by WIN. This is probably due to constitutive phosphatase activity because WIN did not directly stimulate PP1 or PP2A activity when measured using 6,8-difluoro-4-methylumbelliferyl phosphate as a fluorogenic substrate. These data implicate the inhibition of PKA as the predominant pathway for ERK activation by CB1 receptors in N1E-115 cells. PI 3-kinase and Src appear to contribute to ERK activation by maintaining activation of kinases, which prime the pathway and maintain cellular viability.

Cite

CITATION STYLE

APA

Davis, M. I., Ronesi, J., & Lovinger, D. M. (2003). A predominant role for inhibition of the adenylate cyclase/protein kinase A pathway in ERK activation by cannabinoid receptor 1 in N1E-115 neuroblastoma cells. The Journal of Biological Chemistry, 278(49), 48973–48980. https://doi.org/10.1074/jbc.M305697200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free