Dynamical Cluster Approximation

2Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The dynamical cluster approximation (DCA) is a method which systematically incorporates nonlocal corrections to the dynamical mean-field approximation. Here we present a pedagogical discussion of the DCA by describing it as a Φ-derivable coarse-graining approximation in k-space, which maps an infinite lattice problem onto a periodic finite-sized cluster embedded in a self-consistently determined effective medium. We demonstrate the method by applying it to the two-dimensional Hubbard model. From this application, we show evidences of the presence of a quantum critical point (QCP) at a finite doping underneath the superconducting dome. The QCP is associated with the second-order terminus of a line of first order phase separation transitions. This critical point is driven to zero temperature by varying the band parameters, generating the QCP. The effect of the proximity of the QCP to the superconducting dome is also discussed.

Cite

CITATION STYLE

APA

Fotso, H., Yang, S., Chen, K., Pathak, S., Moreno, J., Jarrell, M., … Galanakis, D. (2012). Dynamical Cluster Approximation. In Springer Series in Solid-State Sciences (Vol. 171, pp. 271–302). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-642-21831-6_9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free