Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies

N/ACitations
Citations of this article
176Readers
Mendeley users who have this article in their library.

Abstract

Human cells express thousands of different surface proteins that can be used for cell classification, or to distinguish healthy and disease conditions. A method capable of profiling a substantial fraction of the surface proteome simultaneously and inexpensively would enable more accurate and complete classification of cell states. We present a highly multiplexed and quantitative surface proteomic method using genetically barcoded antibodies called phage-antibody next-generation sequencing (PhaNGS). Using 144 preselected antibodies displayed on filamentous phage (Fab-phage) against 44 receptor targets, we assess changes in B cell surface proteins after the development of drug resistance in a patient with acute lymphoblastic leukemia (ALL) and in adaptation to oncogene expression in a Myc-inducible Burkitt lymphoma model. We further show PhaNGS can be applied at the single-cell level. Our results reveal that a common set of proteins including FLT3, NCR3LG1, and ROR1 dominate the response to similar oncogenic perturbations in B cells. Linking high-affinity, selective, genetically encoded binders to NGS enables direct and highly multiplexed protein detection, comparable to RNA-sequencing for mRNA. PhaNGS has the potential to profile a substantial fraction of the surface proteome simultaneously and inexpensively to enable more accurate and complete classification of cell states.

Cite

CITATION STYLE

APA

Pollock, S. B., Hu, A., Mou, Y., Martinko, A. J., Julien, O., Hornsby, M., … Wells, J. A. (2018). Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies. Proceedings of the National Academy of Sciences of the United States of America, 115(11), 2836–2841. https://doi.org/10.1073/pnas.1721899115

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free