FGFR2 in the dental epithelium is essential for development and maintenance of the maxillary cervical loop, a stem cell niche in mouse incisors

28Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

Abstract

Constant supplies of dental epithelial cells from stem cell niches in the cervical loop enable mouse incisors to grow continuously through life. Fibroblast growth factor 10 (FGF10) has been shown to be essential for development of mouse incisors and maintenance of incisor cervical loops during prenatal development. Whether its cognate receptor, FGFR2IIIB, in the dental epithelium is required for postnatal tooth development remains unknown because Fgfr2IIIb ablation causes neonatal lethality. Here we report that tissue-specific ablation of Fgfr2 in the dental epithelium led to defective maxillary incisors that lacked ameloblasts and the enamel, and had poorly developed odontoblasts. Although the cervical loop in Fgfr2 null maxillary incisors was formed initially, it failed to continue to develop and gradually diminished soon after birth. The results suggest that the FGFR2 signaling axis plays a role in maintaining the stem cell niche required for incisor development and lifelong growth. © 2008 Wiley-Liss, Inc.

Cite

CITATION STYLE

APA

Lin, Y., Cheng, Y. S. L., Qin, C., Lin, C., D’Souza, R., & Wang, F. (2009). FGFR2 in the dental epithelium is essential for development and maintenance of the maxillary cervical loop, a stem cell niche in mouse incisors. Developmental Dynamics, 238(2), 324–330. https://doi.org/10.1002/dvdy.21778

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free