Imputation approaches for potential outcomes in causal inference

34Citations
Citations of this article
106Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The fundamental problem of causal inference is one of missing data, and specifically of missing potential outcomes: if potential outcomes were fully observed, then causal inference could be made trivially. Though often not discussed explicitly in the epidemiological literature, the connections between causal inference and missing data can provide additional intuition. Methods: We demonstrate how we can approach causal inference in ways similar to how we address all problems of missing data, using multiple imputation and the parametric g-formula. Results: We explain and demonstrate the use of these methods in example data, and discuss implications for more traditional approaches to causal inference. Conclusions: Though there are advantages and disadvantages to both multiple imputation and g-formula approaches, epidemiologists can benefit from thinking about their causal inference problems as problems of missing data, as such perspectives may lend new and clarifying insights to their analyses.

Cite

CITATION STYLE

APA

Westreich, D., Edwards, J. K., Cole, S. R., Platt, R. W., Mumford, S. L., & Schisterman, E. F. (2015). Imputation approaches for potential outcomes in causal inference. International Journal of Epidemiology, 44(5), 1731–1737. https://doi.org/10.1093/ije/dyv135

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free