A manganese complex on a gas diffusion electrode for selective CO2 to CO reduction

6Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Manganese carbonyl complexes have been studied extensively in solution as low cost, selective electrocatalysts with a low overpotential for CO2 reduction but experiments are typically at low current densities. In this work, we examined their application in a gas diffusion electrode (GDE) flow cell and achieved partial current densities for CO, jCO of ∼14 mA cm−2 (−0.98 VRHE) with a Faradaic efficiency of >50%. Although we did observe a gradual decrease in activity for the [Mn(2,2′-bipyridine)(CO)3Br]/MWCNT (Mnbpy) GDE with a near neutral electrolyte over a 5 h experiment, it still achieves a higher initial partial current density for CO at a lower overpotential than a Ag nanoparticle benchmark electrode. Promisingly, initial studies of the Mnbpy GDE in a zero-gap electrolyser using a reverse biased bipolar membrane (BPM) achieved FE for CO of 70% at 50 mA cm−2, despite the acidic environment induced through directly contacting the membranes cation exchange layer. Overall this study demonstrates the potential of GDEs for CO2 reduction based on a catalyst using earth abundant elements.

Cite

CITATION STYLE

APA

Eagle, C., Neri, G., Piercy, V. L., Younis, K., Siritanaratkul, B., & Cowan, A. J. (2023). A manganese complex on a gas diffusion electrode for selective CO2 to CO reduction. Sustainable Energy and Fuels, 7(9), 2301–2307. https://doi.org/10.1039/d3se00236e

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free