Fabrication of silver-doped zinc oxide nanorods piezoelectric nanogenerator on cotton fabric to utilize and optimize the charging system

37Citations
Citations of this article
84Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Textile-based piezoelectric nanogenerator generates electrical energy from human motion. Here a novel type of textile-based piezoelectric nanogenerator is reported which is fabricated using the growth of silver-doped zinc oxide on carton fabric. Along with the optical and structural characterization of silver-doped zinc oxide nanorods, the electrical characterization was also performed for silver-doped zinc oxide piezoelectric nanogenerator. The silver-doped zinc oxide piezoelectric nanogenerator was found to generate three times greater power compared to undoped zinc oxide piezoelectric nanogenerator. By applying external mechanical force of 3 kgf and 31 MΩ of load resistance, the silver-doped zinc oxide piezoelectric nanogenerator generated an output power density of 1.45 mW cm−2. The effect of load resistance and load capacitor was determined and optimum values were calculated. The maximum output power was observed at a load resistance of 31 MΩ. The silver-doped zinc oxide piezoelectric nanogenerator was utilized to charge load capacitors and found that maximum energy could be stored at optimum load capacitance of 22 nF in 600 s (1800 cycles). This research may provide the opportunity to design high-output textile-based nanogenerators for practical applications like powering portable devices and sensors.

Cite

CITATION STYLE

APA

Rafique, S., Kasi, A. K., Kasi, J. K., Aminullah, Bokhari, M., & Shakoor, Z. (2020). Fabrication of silver-doped zinc oxide nanorods piezoelectric nanogenerator on cotton fabric to utilize and optimize the charging system. Nanomaterials and Nanotechnology, 10. https://doi.org/10.1177/1847980419895741

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free