A one-pot epoxide-free alkoxylation process has been developed for phenolic compounds. The process involves heating phenols and urea in 1,2-glycols at 170-190 °C using Na2CO3/ZnO as co-catalysts under atmospheric conditions. During the course of this new alkoxylation reaction, a five-membered ring cyclic carbonate intermediate, ethylene carbonate (EC) or propylene carbonate (PPC), was produced in-transit as the key intermediate and was subsequently consumed by phenols to form alkoxylated ether alcohols as final products in excellent yields. For instance, phenol, bisphenol A (BPA), hydroquinone and resorcinol were converted into their respective mono-alkoxylated ether alcohols on each of their phenolic groups in 80-95% isolated yields. In propoxylation of phenols, this approach shows great product selectivity favoring production of high secondary alcohols over primary alcohols in isomeric ratios of nearing 95/5. Since ammonia (NH3) and carbon dioxide (CO2) evolving from the reaction can be re-combined in theory into urea for re-use, the overall net-alkoxylation by this approach can be regarded as a simple condensation reaction of phenols with 1,2-glycols giving off water as its by-product. This one-pot process is simple, safe and environmentally friendlier than the conventional alkoxylated processes based on ethylene oxide (EO) or propylene oxide (PO). Moreover, this process is particularly well-suited for making short chain-length alkoxyether alcohols of phenols.
CITATION STYLE
Lin, H. Y., & Dai, S. A. (2010). One-pot alkoxylation of phenols with urea and 1,2-glycols. Journal of the Chinese Chemical Society, 57(2), 167–173. https://doi.org/10.1002/jccs.201000027
Mendeley helps you to discover research relevant for your work.