STIM and orai1 variants in store-operated calcium entry

46Citations
Citations of this article
96Readers
Mendeley users who have this article in their library.

Abstract

Store-operated Ca2+ entry (SOCE) is an ubiquitous mechanism for Ca2+ entry in eukaryotic cells. This route for Ca2+ influx is regulated by the filling state of the intracellular Ca2+ stores communicated to the plasma membrane channels by the proteins of the Stromal Interaction Molecule (STIM) family, STIM1, and STIM2. Store-dependent, STIM1-modulated, channels include the Ca2+ release-activated Ca2+ channels, comprised of subunits of Orai proteins, as well as the store-operated Ca2+ (SOC) channels, involving Orai1, and members of the canonical transient receptor potential family of proteins. Recent studies have revealed the expression of splice variants of STIM1, STIM2, and Orai1 in different cell types. While certain variants are ubiquitously expressed, others, such as STIM1L, show a more restricted expression. The splice variants for STIM and Orai1 proteins exhibit significant functional differences and reveal that alternative splicing enhance the functional diversity of STIM1, STIM2, and Orai1 genes to modulate the dynamics of Ca2+ signals.

Cite

CITATION STYLE

APA

Rosado, J. A., Diez, R., Smani, T., & Jardín, I. (2016, January 13). STIM and orai1 variants in store-operated calcium entry. Frontiers in Pharmacology. Frontiers Media S.A. https://doi.org/10.3389/fphar.2015.00325

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free