We have examined the question of scarcity-driven competition for outgrowth among growth cones of a single neuron. We measured spontaneous neurite elongation rates from 85 hours of videotape of the arbors of 31 chick sensory neurons in culture. These rate measurements were analyzed in ten minute periods that allowed cell bodies to be classified as to the number of their growth cones and the elongation to be analyzed as a series of discrete events. Comparing periods in which neurons maintained simple bipolar morphology we find no temporal competition between the two growth cones. That is, periods of above-average growth by one growth cone are not compensated by below-average growth during the same period by its sibling growth cone. Analyzing all outgrowth from a neuron based on its number of growth cones shows that net elongation rate from a single cell body is a linear function of the number of growth cones from 1 to 11. These observations suggest that growth cones behave independently and are not limited by availability of structural precursors. A surplus pool of structural precursors available for normal growth is also indicated by the high capacity for growth from single neurites when experimentally stimulated by mechanical tension. In addition, towing one or more neurites at above average rates does not cause any decline in simultaneous growth cone-mediated outgrowth from a single neuron compared to the 2-3 hour period prior to experimentally induced elongation. This high capacity for growth combined with the often observed, intermittant growth behavior of individual growth cones suggests that neurite outgrowth is intrinsically limited primarily by poor growth cone 'performance,' not scarcity-driven competition. We postulate that growth cones are poor 'tractors,' exerting too little tension to exploit the available capacity for axonal elongation.
CITATION STYLE
Lamoureux, P., Buxbaum, R. E., & Heidemann, S. R. (1998). Axonal outgrowth of cultured neurons is not limited by growth cone competition. Journal of Cell Science, 111(21), 3245–3252. https://doi.org/10.1242/jcs.111.21.3245
Mendeley helps you to discover research relevant for your work.