Since they were first developed in 2004, mesoporous bioactive glasses (MBGs) rapidly captured the interest of the scientific community thanks to their numerous beneficial properties. MBGs are synthesised by a combination of the sol-gel method with the chemistry of surfactants to obtain highly mesoporous (pore size from 5 to 20 nm) materials that, owing to their high surface area and ordered structure, are optimal candidates for controlled drug-delivery systems. In this work, we synthesised and characterised a silver-containing mesoporous bioactive glass (Ag-MBG). It was found that Ag-MBG is a suitable candidate for controlled drug delivery, showing a perfectly ordered mesoporous structure ideal for the loading of drugs together with optimal bioactivity, sustained release of silver from the matrix, and fast and strong bacterial inhibition against both Gram-positive and Gram-negative bacteria. Silver-doped mesoporous glass particles were used in three electrospinning-based techniques to produce PCL/Ag-MBG composite fibres, to coat bioactive glass scaffolds (via electrospraying), and for direct sol electrospinning. The results obtained in this study highlight the versatility and efficacy of Ag-substituted mesoporous bioactive glass and encourage further studies to characterize the biological response to Ag-MBG-based antibacterial controlled-delivery systems for tissue-engineering applications.
CITATION STYLE
Ciraldo, F. E., Liverani, L., Gritsch, L., Goldmann, W. H., & Boccaccini, A. R. (2018). Synthesis and characterization of silver-doped mesoporous bioactive glass and its applications in conjunction with electrospinning. Materials, 11(5). https://doi.org/10.3390/ma11050692
Mendeley helps you to discover research relevant for your work.