F-Vectors of Triangulated Balls

7Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We describe two methods for showing that a vector cannot be the f-vector of a homology d-ball. As a consequence, we disprove a conjectured characterization of the f-vectors of balls of dimension five and higher due to Billera and Lee. We also provide a construction of triangulated balls with various f-vectors. We show that this construction obtains all possible f-vectors of three- and four-dimensional balls and we conjecture that this result also extends to dimension five. © 2010 Springer Science+Business Media, LLC.

Cite

CITATION STYLE

APA

Kolins, S. (2011). F-Vectors of Triangulated Balls. Discrete and Computational Geometry, 46(3), 427–446. https://doi.org/10.1007/s00454-010-9300-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free